This research work shows the experimental results obtained at laboratory and plant scale. Scaling-up was based on experimentally corroborated and checked calculations to determine residence time, circulation flow, pH, conductivity, gold, silver and copper grades in pregnant and barren solutions as well as overall recoveries were determined.

Data obtained were used to measure out and build up a direct electrowinning to be employed during low grade ore gold processing in a plant with a capacity of 50 t/day.
INTRODUCCIÓN

El sistema de recuperación de oro por electrolisis de soluciones altas de eliminación obtenidas de la lixiviación de minerales es una planta electrolítica que trabaja en conjunto de células de electrorecuperación con células de lixiviación de ácido de acero.

De ello sale de una compañía especial, tipo "cortächas" y han sido diseñadas conjuntamente con el proceso, por los Ingenieros Juan Antonio Garay y de Lago Nunez, con el apoyo económico de la Asociación Cooperadora del Instituto de Investigaciones Mineras de la Universidad Nacional de Rosario.

Para la recuperación directa del oro por electrolisis de soluciones altas de concentración se usan células de lixiviación de ácido de acero convencionales (adsorción de oro por carbón activado "en suelo" y "electrolisis" de soluciones concentradas de lixiviación, en células del tipo Sadra (G) y similares).

Los resultados de laboratorio y planta a punto del proceso, se efectuaron gran cantidad de ensayos experimentales a escala de laboratorio, planta piloto y escala semindustrial.

Las salidas fueron corroboradas y corroboradas experimentalmente, determinándose tiempo de residencia, velocidades de circulación de electrolito, voltaje e intensidad de corriente.

Se determinaron leyes de oro, plata y cobre en soluciones rica y estéril, así como recuperaciones de dichos metales.

Con los resultados de laboratorio y de planta piloto, se dimensionaron las células de electrolisis, para ser aplicadas a la electrorecuperación de oro del mineral de mina "El Espinillo", La Rioja, Argentina, y de otros minerales de distintos años.

ANTECEDENTES DEL PROYECTO

La solicitud de incorporar la citada tecnología al proceso de recuperación de oro de soluciones de lixiviación de la mina "El Espinillo" surgió del Director y Subdirector del Instituto de Investigaciones Mineras Ingenieros José Agustín Matar y Carlos Guillermo Rudolph respectivamente, quienes disponían de información de que el proceso de electrorecuperación directa de
soluciones diluidas se estaba investigando en EE.UU., a escala de laboratorio (1).

En 1935, el proceso de electrorecuperación de oro y plata de soluciones concentradas, había sido experimentado con una celda de electrólisis a diafragma tipo AARL, con diseño suministrado por el Dr. Roberto Villas Boas, del Centro de Tecnología Mineral, Cetem, Brasil y que fue usada en los ensayos de recuperación de oro del Bajo La Alumbrera, Pcia. de Catamarca. El citado diseño sirvió de base para las primeras pruebas de electrólisis pero debió modificarse en sucesivas oportunidades, sin resultados completamente satisfactorios.

En 1935, el catedrático (1) dio lugar a un nuevo diseño, tipo cartucho, que logró satisfacer los resultados esperados, esto es, depositar electrolicamente el oro y plata, en forma "directa" desde la solución cianurada diluida (concentraciones de oro desde 0,5 a 10 ppm).

REACCIONES ELECTROQUÍMICAS (1. 7).

Las reacciones catódicas que pueden ocurrir durante la electrorecuperación de oro de soluciones cianuradas alcalinas son:

1. \(\text{Au(CN)}_2^- + e^- = \text{Au} + 2 \text{CN}^- \)
 \[E = -0,6 + 0,059 \log [\text{Au(CN)}_2^-] - 0,118 \log [\text{CN}^-] \]

2. \(2 \text{H}_2\text{O} + e^- = \text{H}_2 + 2 \text{HO}^- \)
 \[E = -0,83 - 0,059 \log [\text{HO}^-] \]

3. \(\text{O}_2 + 2 \text{H}_2\text{O} + 4 e^- = 4 \text{HO}^- \)
 \[E = 0,4 - 0,059 \log [\text{HO}^-] \]

La reacción (2) es competitiva y principal consumidora de corriente. En el ánodo se produce la evolución de oxígeno, y la oxidación de cianuro a cianato (cineticamente lenta)

4. \(4 \text{HO}^- = 2 \text{H}_2\text{O} + \text{O}_2 + 4 e^- \)
 \[E = 0,4 - 0,059 \log [\text{HO}^-] \]

5. \(2 \text{HO}^- + \text{CN}^- = \text{CNO}^- + \text{H}_2\text{O} + 2e^- \)
 \[E = -0,97 - 0,0295 \log[\text{CN}^-] + 0,0295 \log[\text{CNO}^-] - 0,059 \log[\text{HO}^-] \]

El cianuro también puede oxídatarse en el bulk de la solución por el oxígeno disuelto. Esto podría también disolver el oro ya depositado en el catodo y para evitarlo, se usa un diafragma alrededor del mismo.
CELDA DE ELECTROLISIS

La red de electrorecuperación directa, consta de un cátodo rectangular formado por una rejilla distribuidora de.header [el alambre de acero] alrededor del cual, se adhiere la lana de acero (Steel-Wool). Esta puede ser de acero común o inoxidable (AISI 316). El cátodo se coloca en una caja rectangular de acrílico ("cartucho") de 0,20 x 0,30 m x 0,04 m. La misma tiene dos caras mayores aplanadas y cementadas con un diaphragma de material sintético. A través de éste pasa la salinización rápida al eliminando el paso de oxígeno desde la región anódica (anodito) a la catódica. La solución disuelta, que (catolito) entra por la parte inferior del cátodo donde deposita el oro contenido, recirculando hasta un baño, su residencia dado, luego del cual se transforma en solución estéril. Las celdas piloto y semi-industrial funcionan sin recirculación.

El cartucho medido por dos análogos planos de acero inoxidable AISI 316, se coloca en una cuba de acrílico o reemplazado con solución disuelta a su alrededor (anodito). Este se pone en contacto con el cátodo a través del diaphragma y sale desde la cuba a otro recipiente desde el cual se recicula por una bomba centrífuga.

La capacidad de carga en oro de la lana (2 o 3 Kg de oro Kg lana), la eficiencia de corriente, el tiempo medio de residencia determinados en laboratorio, así como la concentración de oro en la solución rica, son variables importantes en el cálculo del peso de lana por cátodo, las dimensiones y números requeridos (3, 4). La celda utiliza se esquematiza en la figura 1 (6).

ENSAYOS EXPERIMENTALES

Las soluciones de proceso fueron preparadas sintéticamente con oro y plata metálicos disueltos químicamente en la concentración correspondiente, y llevadas a medio clorurado y al pH adecuado por el uso exclusivo de cloruro de sodio e hidróxido de sodio.

Lo anterior se realizó debido a la inexistencia de soluciones reales de lixiviación de muestras representativas de
mineral de la mina El Espinillo. La experimentación así como el diseño y construcción final del sistema fueron realizados según las especificaciones dadas por el sector lixiviación, este es soluciones ricas de lixiviación entre 7 y 10 ppm, así como uso de hidróxido de sodio en vez de cal en el proceso de cianuración. Los resultados obtenidos, en las tres escalas operativas, se detallan más adelante.

ESCALA DE LABORATORIO

El objeto de esta etapa fue determinar la factibilidad de recuperar oro y plata de soluciones diluidas por vía electrolítica.

Se ensayaron distintos tipos de celdas de electrod deposición, distintos tipos de materiales constituyentes del cátodo y diferentes condiciones de flujo. Los parámetros de procesos se muestran en la tabla I:

<table>
<thead>
<tr>
<th>TABLA I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. de oro (g/m³)</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Conductividad (mS/cm)</td>
</tr>
<tr>
<td>Temperatura (°C)</td>
</tr>
<tr>
<td>voltaje (V)</td>
</tr>
<tr>
<td>Intensidad de corriente (A)</td>
</tr>
<tr>
<td>Conc. Au en sol. rica (g/m³)</td>
</tr>
<tr>
<td>Concentración de Ag (g/m³)</td>
</tr>
<tr>
<td>Conc. Cu en sol.rica.(g/m³)</td>
</tr>
</tbody>
</table>

El volumen de solución empleado en cada prueba fue aproximadamente 14,0 l. El sistema se operó con recirculación en todos los casos. El caudal osciló entre 400 y 100 l/h.

El esquema de ensayos de muestra en la figura 1, donde se observa la recirculación de la solución entre el "cartucho" electrolítico y la cuba de acrílico de 14 l de capacidad.
Los ensayos de laboratorio permitieron seleccionar el tipo de celda más adecuado, obtener parámetros de diseño y ajustar las variables operativas.

FIGURA 1 - ESQUEMA DE ENSAYOS

1.- Cátodo de acrílico 2.- Anodos de tela de acero inox. AISI316 3.- Cátodo de lana de acero 4.- Tanque de solución (141)

ESCALA PILOTO - ETAPA 1

El objeto de esta etapa fue obtener y ajustar parámetros que permitieron diseñar y construir el modelo de celda semiindustrial. Además se logró un mejor ajuste de las variables operativas. Los parámetros del proceso variaron según se indica en la Tabla II.

TABLA II - VARIABLES OPERATIVAS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de cianuro g/m³</td>
<td>400 - 800</td>
</tr>
<tr>
<td>Temperatura °C</td>
<td>18 - 20</td>
</tr>
<tr>
<td>pH</td>
<td>10 - 12,5</td>
</tr>
<tr>
<td>Conductividad mS/cm</td>
<td>15 - 22</td>
</tr>
<tr>
<td>Concentración de oro g/m³</td>
<td>1,5 - 15</td>
</tr>
<tr>
<td>Voltaje V</td>
<td>2,5 - 3,2</td>
</tr>
<tr>
<td>Intensidad de corriente A</td>
<td>1,7 - 2,5</td>
</tr>
</tbody>
</table>
El volumen de solución empleado en cada prueba fue de 750 l. El sistema se operó con recirculación en todos los casos. El caudal osciló entre 600 y 1500 l/h. El esquema de ensayos es idéntico al de la etapa de laboratorio, utilizando la misma celda de acrílico con cartuchaz de 0,20 m x 0,30 m x 0,048 m de espesor.

ESCALA PILOTO - ETAPA 2

Los resultados obtenidos en esta etapa mostraron altas recuperaciones (>97%). Las leyes de solución rica y cetríl se observan en la Tabla III.

TABLA III - LEYES DE SOLUCIONES CIANURADAS

<table>
<thead>
<tr>
<th></th>
<th>Solución Rica</th>
<th>Solución Pobre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oro g/m³</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Plata g/m³</td>
<td>0,10</td>
<td></td>
</tr>
</tbody>
</table>

Las soluciones empleadas fueron sintéticas, perfectamente claras y libres de calcio. Los valores de pH y conductividad deseados fueron alcanzados empleando solamente OHNa. Se realizaron pruebas adicionales agregando cobre a la solución rica no observándose que el mismo se depositase en la celda.

Las variables del proceso se muestran en la Tabla IV.

TABLA IV - VARIABLES DEL PROCESO

<table>
<thead>
<tr>
<th>Variable</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de cianuro (g/m³)</td>
<td>180 - 600</td>
</tr>
<tr>
<td>Conductividad (mS/cm)</td>
<td>11 - 12</td>
</tr>
<tr>
<td>Intensidad de corriente (A)</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Voltaje (V)</td>
<td>14 - 16</td>
</tr>
<tr>
<td>Caudal (l/h)</td>
<td>1.000 - 2.500</td>
</tr>
</tbody>
</table>

El esquema de ensayos es idéntico a los casos anteriores, solo que la celda utilizada en este caso, tiene un cátodo de 1 m² de superficie (1 m x 1 m x 0,10 m).
ESCALA PILOTO - ETAPA 3

Los ensayos en esta etapa, se efectuaron con el fin de estudiar el comportamiento del prototipo definitivo de celda con entorno de dimensiones 0,7 m x 0,7 m x 0,10 m.

Algunas electrólisis se realizaron sin recirculación. Las muestras de solución se tomaron en forma instantánea, pero en algunas pruebas se tomaron del tanque de solución estéril (SET) siendo en consecuencia muestras promedio. Las restantes corridas se efectuaron con recirculación.

El intervalo de variación de las variables operativas se detalla en la Tabla V y el esquema de ensayos en la figura 2.

FIGURA 2 - ESQUEMA DE PRUEBAS

TABLA V - VARIABLES OPERATIVAS

<table>
<thead>
<tr>
<th>Intervalo de variación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de cianuro (ppm)</td>
<td>200 - 400</td>
</tr>
<tr>
<td>Caudal (l/h)</td>
<td>2000 - 3000</td>
</tr>
<tr>
<td>pH</td>
<td>11.2 - 11.6</td>
</tr>
<tr>
<td>Conductividad (mS/cm)</td>
<td>20 - 24</td>
</tr>
<tr>
<td>Voltaje (V)</td>
<td>14 - 16</td>
</tr>
<tr>
<td>Intensidad de corriente (A)</td>
<td>10 - 30</td>
</tr>
</tbody>
</table>
ESCALA PILOTO - ETAPA 4

En esta etapa se ensayó la precipitación de la plata y del oro en un banco de cinco celdas. Los resultados fueron altamente satisfactorios obteniéndose soluciones estériles de muy bajo tenor (0,0 - 0,2 ppm).

Los ensayos se efectuaron siempre sin recirculación según puede observarse en el esquema de la figura 3.

Los valores de las variables operativas, se muestran en la tabla V.

TABLA V - VARIABLES OPERATIVAS

Intervalo de variación

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de cianuro (ppm)</td>
<td>250 - 550</td>
</tr>
<tr>
<td>Caudal (l/h)</td>
<td>200 - 3000</td>
</tr>
<tr>
<td>pH</td>
<td>11,2 - 12,0</td>
</tr>
<tr>
<td>Conductividad (mS/cm)</td>
<td>17,0 - 24,0</td>
</tr>
<tr>
<td>Voltaje (V)</td>
<td>3,0 - 4,0</td>
</tr>
<tr>
<td>Intensidad de corriente (A)</td>
<td>20 - 40</td>
</tr>
</tbody>
</table>

FIGURA 3 - ESQUEMA DE PRUEBAS
RESULTADOS Y DISCUSIONES

ETAPA DE LABORATORIO

A continuación se muestran los resultados obtenidos en los ensayos de laboratorio de la electrorrecuperación de oro y plata de soluciones diluidas.

Las variables estudiadas fueron: concentración de cianuro, temperatura, pH, conductividad, concentración de oro, plata y cobre, voltaje y amperaje. Además debe considerarse el tiempo de electroólisis empleado para lograr una recuperación deseada.

La variación de la concentración de oro y/o plata en función del tiempo de electroólisis se puede observar en la figura 4. En ésta, la concentración correspondiente a un tiempo de electroólisis 0 es la de la solución rica. Se emplearon dos tipos de celda: una convencional y otra de flujo volúmico ("cartucho"). La de tipo convencional se ensayó sin diafragma y con diafragma abierto y cerrado.

Todas las pruebas se efectuaron usando lana de acero como cátodo, a excepción de una en que se empleó fibra de carbono.

Los valores de las velocidades de deposición se detallan en las Tablas VII a X. Estos valores han sido calculados para los dos tipos de celda y para las distintas alternativas del sistema convencional.

TABLA VII - SISTEMA DE CELDA CONVENCIONAL

<table>
<thead>
<tr>
<th>Conc. de oro en alimentación (g/m³)</th>
<th>Recuperación (%)</th>
<th>Velocidad (mg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70</td>
<td>100.0</td>
<td>13.0</td>
</tr>
<tr>
<td>2.20</td>
<td>95.4</td>
<td>42.0</td>
</tr>
<tr>
<td>4.75</td>
<td>96.8</td>
<td>47.0</td>
</tr>
<tr>
<td>5.20</td>
<td>98.0</td>
<td>71.0</td>
</tr>
<tr>
<td>12.20</td>
<td>90.0</td>
<td>159.5</td>
</tr>
<tr>
<td>29.00</td>
<td>100.0</td>
<td>267.0</td>
</tr>
<tr>
<td>Promedio</td>
<td>96.7</td>
<td>99.8</td>
</tr>
</tbody>
</table>
FIGURA 4 - CONCENTRACION DE ORO Vs. TIEMPO DE ELECTROLISIS

FIGURA 5 - CONCENTRACION DE ORO Vs. TIEMPO DE ELECTROLISIS
FIGURA 6 - VELOCIDAD DE DEPOSICIÓN DE ORO ACUMULADO

VEL. DE DEPOSICIÓN DE ORO ACUMULADO

FIGURA 7 - CONCENTRACIÓN DE ORO Vs. TIEMPO DE ELECTROLISIS

CONC. ORO (g/m3)
FIGURA 8 - CONCENTRACIÓN DE ORO Vs. TIEMPO DE ELECTROLISIS

CONC. Ag. EN SOLUCION RICA (g/m3) CONC. Ag. EN SOLUCION ESTERIL (g/m3)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0 10 20 30 40 50 60 70

* CONC. Ag. EN SOLUCION RICA * CONC. Ag. EN SOLUCION ESTERIL

FIGURA 9 - CONCENTRACIÓN DE PLATA A LA ENTRADA Y SALIDA DE CADA CELDA PARA DISTINTOS TIEMPOS DE ELECTROLISIS

CONC. PLATA (g/m3)

0 5 10 15 20

A B C D E F

* 5 minutos * 9 minutos * 13 minutos
TABLA VIII - SISTEMA DE CELDA DE FLUJO VOLUMÉTRICO ("Cartucho")

<table>
<thead>
<tr>
<th>Conc. de oro en alimentación (g/m³)</th>
<th>Recuperación</th>
<th>Velocidad (mg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>56.6</td>
<td>47.5</td>
</tr>
<tr>
<td>3.8</td>
<td>97.3</td>
<td>73.9</td>
</tr>
<tr>
<td>9.9</td>
<td>86.8</td>
<td>240.0</td>
</tr>
<tr>
<td>10.0</td>
<td>100.0</td>
<td>200.0</td>
</tr>
<tr>
<td>6.7</td>
<td>85.1</td>
<td>141.0</td>
</tr>
</tbody>
</table>

Promedio =

TABLA IX - SISTEMA DE CELDA CONVENCIONAL CON FIBRA DE CARBONO COMO CATODO

<table>
<thead>
<tr>
<th>Conc. de oro en alimentación (g/m³)</th>
<th>Recuperación</th>
<th>Velocidad (mg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.9</td>
<td>98.3</td>
<td>109.1</td>
</tr>
</tbody>
</table>

TABLA X - SISTEMA DE CELDA CONVENCIONAL CON DIAFRAGMA ABIERTO Y CERRADO

<table>
<thead>
<tr>
<th>Conc. de oro en alimentación (g/m³)</th>
<th>Recuperación</th>
<th>Velocidad (mg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>70.5</td>
<td>192 *</td>
</tr>
<tr>
<td>214</td>
<td>76.6</td>
<td>180 *</td>
</tr>
<tr>
<td>154</td>
<td>99.2</td>
<td>737 **</td>
</tr>
</tbody>
</table>

* : diafragma cerrado
** : diafragma abierto

ETAPA PILOTO
Los resultados obtenidos en los ensayos a escala piloto se pueden observar en las figuras 5 a 9.
La variación de la concentración de oro durante la electrolisis piloto, etapa 1, se muestra en la curva de concentración de la figura 5.

A partir de los análisis químicos fue posible obtener las velocidades de deposición y las recuperaciones. Los citados valores están graficados en la figura 6. Se han calculado las velocidades de deposición y las recuperaciones para los distintos intervalos de tiempo, así también como la velocidad de deposición media y la recuperación acumulada para cada una de las electrolisis (Tabla XI).

Las figuras 7, 8 y 9 muestran la variación de concentración de oro en las electrolisis piloto, etapa 2, 3 y 4, respectivamente.

Se presenta un resumen de la velocidad de deposición media acumulada de cada ensayo y una correlación entre esta velocidad y la ley de oro en la solución rica (Figura 10).

FIGURA 10 - CORRELACIÓN ENTRE LAS VELOCIDADES DE DEPOSICION MEDIAS ACUMULADAS Y LA CONCENTRACION DE ORO EN LA SOLUCION RICA
<table>
<thead>
<tr>
<th>Electrolysis</th>
<th>Velocidad media de deposición acumulada g/m³</th>
<th>Conc. de oro en la solución rica g/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>316</td>
<td>6.1</td>
</tr>
<tr>
<td>2</td>
<td>163</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>77</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>175</td>
<td>7.3</td>
</tr>
<tr>
<td>6</td>
<td>162</td>
<td>5.4</td>
</tr>
<tr>
<td>7</td>
<td>179</td>
<td>9.7</td>
</tr>
<tr>
<td>8</td>
<td>119</td>
<td>5.0</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>5.9</td>
</tr>
<tr>
<td>10</td>
<td>169</td>
<td>6.4</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>6.6</td>
</tr>
<tr>
<td>12</td>
<td>101</td>
<td>5.6</td>
</tr>
<tr>
<td>13</td>
<td>131</td>
<td>8.3</td>
</tr>
<tr>
<td>14</td>
<td>120</td>
<td>2.6</td>
</tr>
<tr>
<td>15</td>
<td>173</td>
<td>4.9</td>
</tr>
<tr>
<td>16</td>
<td>306</td>
<td>9.0</td>
</tr>
<tr>
<td>17</td>
<td>311</td>
<td>129.0</td>
</tr>
<tr>
<td>18</td>
<td>1283</td>
<td>101</td>
</tr>
<tr>
<td>19</td>
<td>258</td>
<td>6.7</td>
</tr>
<tr>
<td>20</td>
<td>555</td>
<td>8.9</td>
</tr>
<tr>
<td>21</td>
<td>1283</td>
<td>58.0</td>
</tr>
</tbody>
</table>

Promedio de velocidad de carga media acumulada = 400 mg/h
Promedio de velocidad de carga media acumulada cuando la concentración de oro es menor de 10 g/m³ = 225 mg/h
ETAPA SEMIINDUSTRIAL: PERFORMANCE DE MINA ESPINILLO

El procesamiento electrolítico de las soluciones de la mina El Espinillo fue complicado debido a la formación de lamas, que taponaban los cartuchos. Al ser floculadas con cal, dio presencia de ión calcio en las soluciones electrolíticas, baja conductividad, interferencias en la formación de los iones complejos y baja recuperación de oro.

Lo anterior fue subsanado por el agregado de carbonato de sodio a las soluciones, para producir la precipitación del ión calcio como carbonato de calcio. Esto último permitió subir los valores de recuperación.

La planta comenzó a operar el 26/11/88. Al comienzo la conductividad era baja, a pesar de que se estaba operando solamente con NaOH en la lixiviación. Esto obligó a agregar más NaOH a la solución de alimentación a las celdas. Al principio la recuperación llegó a un 95%. Al transcurrir el tiempo los cartuchos se llenaron de barro proveniente de la solución rica, disminuyendo su área catódica y produciendo problemas de taponamiento en las celdas. En estas condiciones la recuperación más baja obtenida fue del 50%, pero al aumentar la ley de oro en la solución rica, la recuperación aumentó al 80% en promedio (Ver Figura 11).

El 10/12/88 se efectuó el cambio de los cartuchos. La recuperación se incrementó nuevamente, llegando a un 90%. Esto demuestra que la baja recuperación se puede atribuir a la presencia de las lamas.

Para mejorar el filtrado de las piletas de lixiviación comenzó a molerse el mineral utilizando cal y a eliminarse el agregado de NaOH paulatinamente. Esto causó problemas en la electrodeposición por la baja conductividad de la solución, que llegó a 6,5 mS/cm. Se corrigió parcialmente agregando NaOH a la solución antes de entrar a la celda. No se pudo agregar la cantidad necesaria debido al elevado pH de la solución de lixiviación. Debido a esto debió aumentarse el voltaje para lograr el amperaje deseado. Esto provocó que el cobre de la solución comenzara a depositarse en las celdas.

En estas condiciones de operación, es decir con soluciones más o menos claras y con elevado tenor de calcio, se alcanzaron las recuperaciones más bajas: 0% de oro y 5% de
FIGURA 11 - RECUPERACION DE ORO EN LA ELECTRODEPOSIÇION USANDO HIDROXIDO DE SODIO EN LA LIXIVIACION Y CON PRESENCIA DE LAMAS

CONC. ORO EN SOL. RICA (g/m3) RECUP. DE ORO (%)
3,5 80 90 100
3 70 70 70
2,5 58 58 58
2 50 50 50
1,5 0,8 0,8 0,8
1 0,5 0,5 0,5
0,5 0,4 0,4 0,4
0 0,1 0,1 0,1

NUMERO DE MUESTRA

- CONC. ORO SOL. RICA + RECUP. ORO (%)

FIGURA 12 - RECUPERACION DE ORO EN LA ELECTRODEPOSIÇION UTILIZANDO CAL EN LA LIXIVIACION INCIDENCIA DEL AGREGADO DE CARBONATO DE SODIO

CONC. DE ORO EN SOL. RICA (g/m3) RECUPERACION DE ORO (%)
7 45 45 45
6 39 39 39
5 30 30 30
4 20 20 20
3,5 12 12 12
3 4 4 4
2,5 1,5 1,5 1,5
2 1 1 1
1,5 0,8 0,8 0,8
1 0,5 0,5 0,5
0,5 0,4 0,4 0,4
0 0,1 0,1 0,1

NUMERO DE MUESTRAS

- CONC. ORO SOL. RICA - RECUPERACION (%) + CAMBIO DE CARTUCHOS

AGREGADO DE CARBONATO DE SODIO
plata. A mediados de enero del corriente año se cambiaron nuevamente los cartuchos y se observó incremento en la recuperación (Ver Figura 12).

Se ensayó disminuir la concentración de calcio agregando carbonato de sodio (CO$_3$Na$_2$), a la solución de alimentación a las celdas. Esto mejoró la recuperación (que alcanzó el 50%) pero produjo problemas operativos debido a la formación de CaCO$_3$. Por lo anterior se puede concluir que el calcio no debe estar presente en las soluciones, que debe reemplazarse por otro reactivo en la lixiviación y que el mineral usado como materia prima debe estar libre del mismo.

Se supone que la recuperación hubiese aumentado, de haberse controlado mejor la concentración de cianuro libre. Esta fue elevada (>600 mg/l) para el mineral del Espinillo que contiene mucho cobre.

CONCLUSIONES

Se concluye de todo lo anterior, que el uso del sistema de electrólisis directa de oro desde soluciones diluidas, es factible, en las condiciones especificadas, utilizando hidróxido de sodio en la lixiviación, y sin la presencia de lamas. Estas últimas deben ser derivadas a un circuito adicional, y si existiese ión calcio en la solución a precipitar en concentración elevada, éste debiera ser eliminado químicamente por complejación o por precipitación y posterior clarificación con un filtro adecuado.

Asimismo debe controlarse la conductividad, debiendo ser mayor de 10 mS/Cm, así como la concentración de cianuro libre ya que su aumento disminuye la recuperación.

Cabe agregar que en una etapa posterior, se aplicó este sistema en la planta Rivadavia del Instituto de Investigaciones Mineras, para tratar minerales de oro de diverso origen (9). Los resultados obtenidos fueron mejorados al hacerse uso de un sistema de resinas de intercambio iónico para eliminar el calcio, antes de la electrólisis directa. Las celdas utilizadas en este caso, fueron cilíndricas en vez de rectangulares.

El costo de la planta semiindustrial para procesar 5 m3/h de solución rica con concentraciones de oro de 5 a 10 mg/l, fue
de US$ 5000, y las recuperaciones promedio obtenidas fueron del 65 a 70% del oro de la solución.

La citada investigación ha sido complementada con análisis de costos y con un estudio cinético de la reacción de electrodépósitosión (de cinética lenta), mediante la obtención de curvas de polarización estacionaria, ensayos de voltametría cíclica e impedancia faradaica (8).

REFERENCIAS

